Pure and Applied Mathematics

Pure and Applied Mathematics

Pure and Applied Mathematics A Series of Monographs and Textbooks Editors Paul A. Smith and Samuel Eilenbrrg Columbia University, New York 1 : ARNOLD...

223KB Sizes 5 Downloads 557 Views

Pure and Applied Mathematics A Series of Monographs and Textbooks Editors Paul A. Smith and Samuel Eilenbrrg Columbia University, New York

1 : ARNOLD SOMMERFELD. Partial Differential Equations in Physics. 1949 (Lectures

on Theoretical Physics, Volume VI) 2 : REINHOLD BAEFLLinear Algebra and Projective Geometry. 1952 BUSEMANN AND PAUL KEUY. Projective Geometry and Projective 3 : HERBERT Metrics. 1953 BERGMAN AND M. SCHIFFER. Kernel Functions and Elliptic Differential 4 : STEFAN Equations in Mathematical Physics. 1953 5 : RALPH PHILIPBOAS,JR. Entire Functions. 1954 6: HERBERT BUSEMANN. The Geometry of Geodesics. 1955 7 : CLAUDECHEVALLEY. Fundamental Concepts of Algebra. 1956 8: SZE-TSENHu. Homotopy Theory. 1959 9 : A. M. OSTROWSKI. Solution of Equations and Systems of Equations. Third Edition, in preparation Treatise on Analysis : Volume I, Foundations of Modern Analy10: J. DIEUDONN~. sis, enlarged and corrected printing, 1969. Volume 11, 1970. Volume 111, 1972 11 : S. I. GOLDBERG. Curvature and Homology. 1962. HELGASON. Differential Geometry and Symmetric Spaces. 1962 12 : SIGURDUR 13 : T. H. HILDEBRANDT. Introduction to the Theory of Integration. 1963. 14 : SHREERAM ABHYANKAR. Local Analytic Geometry. 1964 15 : RICHARD L. BISI~OP AND RICHARD J. CRITTENDEN. Geometry of Manifolds. 1964 16: STEVEN A. GAAL.Point Set Topology. 1964 MITCHELL. Theory of Categories. 1965 17 : BARRY P. MORSE.A Theory of Sets. 1965 18 : ANTHONY 19 : GUSTAVECHOQUET.Topology. 1966 20 : Z. 1. BOREVICHAND I. R. SHAPAREVICH. Number Theory, 1966 AND J U A N JORGE SCHAFFER. Linear Differential Equations 21 : Josk LUISMASSERA and Function Spaces. 1966 22 : RICHARD D. SCHAFER. An Introduction to Nonassociative Alegbras. 1966 23: MARTINEICHLER.Introduction to the Theory of Algebraic Numbers and Functions. 1966 24 : SHREERAM ABHYANKAP. Resolution of Singularities of Embedded Algebraic Suriaces. 1966

25 : 26: 27: 28: 29 : 30 : 31 : 32 : 33: 34: 35 : 36: 37 : 38: 39 : 40: 41 : 42: 43: 44 : 45 : 46: 47 :

48 : 49 : 50 : 51 :

52 :

FRANCOIS TREVES. Topological Vector Spaces, Distributions, and Kernels. 1967 PETER D. LAXA N D RALPHS. PHILLIPS. Scattering Theory. 1967. OYSTEINORE. The Four Color Problem. 1967 MAURICE HEINS.Complex Function Theory, 1968 R. M. BLUMENTHAL A N D R. K. GETOOR. Markov Processes and Potential Theory. 1968 L. J. MORDELL. Diophantine Equations. 1969 J. BARKLEY ROSSER.Simplified Independence Proofs : Boolean Valued Models of Set Theory. 1969 WILLIAMF. DONOGHUE, JR. Distributions and Fourier Transforms. 1969 MARSTON MORSEA N D STEWART S. CAIRNS.Critical Point Theory in Global Analysis and Differential Topology. 1969 EDWINWEISS.Cohomology of Groups. 1969 HANSFREUDENTHAL A N D H. DE VRIES.Linear Lie Groups. 1969 LASZLO FUCHS. Infinite Abelian Groups : Volume I, 1970. Volume 11, 1973 KEIONAGAMI. Dimension Theory. 1970 PETER L. DUREN.Theory of HP Spaces. 1970 BODOPAREICIS. Categories and Functors. 1970 PAUL L. BUTZERA N D ROLFJ. NESSEL.Fourier Analysis and Approximation: Volume 1, One-Dimensional Theory. 1971 EDUARD PRUGOVEEKI. Quantum Mechanics in Hilbert Space. 1971 D. V. WIDDER:An Introduction to Transform Theory. 1971 MAXD. LARSEN A N D PAUL J. MCCARTHY. Multiplicative Theory of Ideals. 1971 ERNST-AUGUST BEHRENS.Ring Theory. 1972 MORRISNEWMAN. Integral Matrices. 1972 GLENE. BREDON. Introduction to Compact Transformation Groups. 1972 WERNER GREUB,STEPHEN HALPERIN, A N D RAYVANSTONE. Connections, Curvature, and Cohomology: Volume I, De Rham Cohomology of Manifolds and Vector Bundles, 1972. Volume 11, Lie Groups, Principal Bundles, and Characteristic Classes, in preparation XIA DAO-XING.Measure and Integration Theory of Infinite-Dimensional Spaces : Abstract Harmonic Analysis. 1972 RONALD G. DOUGLAS. Banach Algebra Techniques in Operator Theory. 1972 WILLARD MILLFA,JR. Symmetry Groups and Their Applications. 1972 ARTHUR A. SAGLE A N D RALPHE. WALDE. Introduction to Lie Groups and Lie Algebras. 1973 T. BENNY RUSHING. Topological Embeddings. 1973 In prrparatiori GERALD J. J A N U SZ. Algebraic Number Fields SAMUEL EILENBERG. Automata, Languages, and Machines : Volume A JAMES W. VICK.Homology Theory : An Introduction to Algebraic Topology E. R. KOLCHIN. Differential Algebra and Algebraic Groups H. M. EDWARDS. Riemann’s Zeta Function WAYNE ROBERTS A N D DALEVARBERG. Convex Functions